Chapter 1 • Exercise 3
Part 1
We directly have
\begin{align}
\ln \mathbb{E} \exp \{- \eta (X - \mathbb{E}[X])\} &\leq \mathbb{E} \exp \{- \eta (X - \mathbb{E}[X])\} - 1 \\
&\leq \mathbb{E} \left\{1 - \eta (X - \mathbb{E}[X]) + \frac{\eta^2}{2} (X - \mathbb{E}[X])^2 \right\} - 1 \\
&= \frac{\eta^2}{2}\left(\mathbb{E}[X^2] - \mathbb{E}[X]^2\right) \\
&\leq \frac{\eta^2}{2}\mathbb{E}[X^2]
\end{align}
as desired.
Part 2
Rearranging gives us
\begin{align}
\eta \mathbb{E}[X] \leq - \ln \mathbb{E} \exp\{- \eta X\} + \frac{\eta^2}{2} \mathbb{E}[X^2]
\end{align}
Hence
\begin{align}
\eta \mathbb{E}_{\hat{f}^t \sim q^{t} }[l(\hat{f}^t(x), y)] &\leq - \ln \mathbb{E}_{\hat{f}^t \sim q^{t} } \exp\{- \eta l(\hat{f}^t(x), y)\} + \frac{\eta^2}{2} \mathbb{E}_{\hat{f}^t \sim q^{t} }[l(\hat{f}^t(x), y)^2] \\
&= - \ln \sum_{f \in \mathcal{F}} e^{- \eta l(f(x), y)} \frac{e^{- \sum_{i=1}^{t-1} l(f(x), y)}}{\sum_{f' \in \mathcal{F}} e^{- \sum_{i=1}^{t-1} l(f(x), y)}} + \frac{\eta^2}{2} \mathbb{E}_{\hat{f}^t \sim q^{t} }[l(\hat{f}^t(x), y)^2] \\
&= \Phi_{\eta}^{t} - \Phi_{\eta}^{t-1} + \frac{\eta^2}{2} \mathbb{E}_{f \sim q^{t} }[l(f(x), y)^2]
\end{align}
Summing over \(t\), we have
\begin{align}
\sum_{t=1}^{T} \mathbb{E}_{\hat{f}^t \sim q^{t} }[l(\hat{f}^t(x), y)] &\leq \frac{1}{\eta} \left(\Phi_{\eta}^{T} - \Phi_{\eta}^{0}\right) + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E}_{\hat{f}^t \sim q^{t} }[l(\hat{f}^t(x), y)^2]
\end{align}
Finally we have both
\begin{align}
\Phi_{\eta}^0 &= - \ln |\mathcal{F}| \\
\Phi_{\eta}^T &\leq \eta \sum_{t=1}^{T} l(f^{\star}(x), y) \quad \forall \ f^{\star} \in \mathcal{F}
\end{align}
Hence for any \(f^{\star} \in \mathcal{F}\), we have
\begin{align}
\sum_{t=1}^{T} \mathbb{E}_{\hat{f}^t \sim q^{t} }[l(\hat{f}^t(x), y)] - l(f^{\star}(x), y) \leq \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E}_{\hat{f}^t \sim q^{t} }[l(\hat{f}^t(x), y)^2] + \frac{\log |\mathcal{F}|}{\eta}
\end{align}
as desired.
Part 3
Since \(l\) is bounded, we have
\begin{align}
\sum_{t=1}^{T} \mathbb{E}_{\hat{f^t} \sim q^t} [l(\hat{f^t}(x^t), y^t)] &\leq \frac{\eta}{2} \mathbb{E}_{\hat{f^t} \sim q^t} [l(\hat{f^t}(x^t), y^t)^2] + \frac{\log |\mathcal{F}|}{\eta} \\
&\leq \frac{\eta}{2} \mathbb{E}_{\hat{f^t} \sim q^t} [l(\hat{f^t}(x^t), y^t)] + \frac{\log |\mathcal{F}|}{\eta}
\end{align}
rearranging, we have
\begin{align}
\sum_{t=1}^{T} \mathbb{E}_{\hat{f^t} \sim q^t} [l(\hat{f^t}(x^t), y^t)] &\leq \frac{\log |\mathcal{F}|}{\eta(1 - \frac{\eta}{2})}
\end{align}
choosing \(\eta = 1\), we have
\begin{align}
\sum_{t=1}^{T} \mathbb{E}_{\hat{f^t} \sim q^t} [l(\hat{f^t}(x^t), y^t)] &\leq 2 \log |\mathcal{F}|
\end{align}
Part 4
Note that whenever \(l(\hat{f}^t(x^t), y^t) = 1\), \(|\mathcal{F}^{t}| \leq \frac{1}{2}|\mathcal{F}^{t-1}|\) (ie, whenever the majority is wrong, the size of our version space goes down by a factor of two). Thus we have that
\begin{align}
|\mathcal{F}^{t}| \leq \frac{|\mathcal{F}|}{\exp \left\{\ln 2 \times \sum l(\hat{f}^t(x^t), y^t)\right\}}
\end{align}
hence for all \(t\)
\begin{align}
\sum_{t=0}^{T} l(\hat{f}^t(x^t), y^t) \leq \frac{1}{\ln 2} \log \frac{|\mathcal{F}|}{|\mathcal{F}^{T}|} \leq \frac{1}{\ln 2} \log {|\mathcal{F}|}
\end{align}
Return home